Optical geometries

dc.contributor.authorFino, A.
dc.contributor.authorLeistner, T.
dc.contributor.authorTaghavi-Chabert, A.
dc.date.issued2025
dc.descriptionPublished online March 2025.
dc.description.abstractWe study the notion of optical geometry, defined to be a Lorentzian manifold equipped with a null line distribution, from the perspective of intrinsic torsion. This is an instance of a non-integrable version of holonomy reduction in Lorentzian geometry. Such distributions are tangent to congruences of null curves, which play an important rˆole in general relativity. Their conformal properties are investigated. We also extend these ideas to generalised optical geometries as introduced by Robinson and Trautman.
dc.description.statementofresponsibilityAnna Fino, Thomas Leistner and Arman Taghavi-Chabert
dc.identifier.citationAnnali della Scuola Normale Superiore di Pisa: Classe di Scienze, 2025; XXVI(1):341-396
dc.identifier.doi10.2422/2036-2145.202010_050
dc.identifier.issn0391-173X
dc.identifier.issn2036-2145
dc.identifier.orcidLeistner, T. [0000-0002-8837-5215]
dc.identifier.urihttps://hdl.handle.net/2440/144983
dc.language.isoen
dc.publisherScuola Normale Superiore - Edizioni della Normale
dc.relation.granthttp://purl.org/au-research/grants/arc/DP190102360
dc.rightsCopyright status unknown
dc.source.urihttps://doi.org/10.2422/2036-2145.202010_050
dc.titleOptical geometries
dc.typeJournal article
pubs.publication-statusPublished

Files

Collections