Optical geometries
dc.contributor.author | Fino, A. | |
dc.contributor.author | Leistner, T. | |
dc.contributor.author | Taghavi-Chabert, A. | |
dc.date.issued | 2025 | |
dc.description | Published online March 2025. | |
dc.description.abstract | We study the notion of optical geometry, defined to be a Lorentzian manifold equipped with a null line distribution, from the perspective of intrinsic torsion. This is an instance of a non-integrable version of holonomy reduction in Lorentzian geometry. Such distributions are tangent to congruences of null curves, which play an important rˆole in general relativity. Their conformal properties are investigated. We also extend these ideas to generalised optical geometries as introduced by Robinson and Trautman. | |
dc.description.statementofresponsibility | Anna Fino, Thomas Leistner and Arman Taghavi-Chabert | |
dc.identifier.citation | Annali della Scuola Normale Superiore di Pisa: Classe di Scienze, 2025; XXVI(1):341-396 | |
dc.identifier.doi | 10.2422/2036-2145.202010_050 | |
dc.identifier.issn | 0391-173X | |
dc.identifier.issn | 2036-2145 | |
dc.identifier.orcid | Leistner, T. [0000-0002-8837-5215] | |
dc.identifier.uri | https://hdl.handle.net/2440/144983 | |
dc.language.iso | en | |
dc.publisher | Scuola Normale Superiore - Edizioni della Normale | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP190102360 | |
dc.rights | Copyright status unknown | |
dc.source.uri | https://doi.org/10.2422/2036-2145.202010_050 | |
dc.title | Optical geometries | |
dc.type | Journal article | |
pubs.publication-status | Published |