Evaluation of Spinning Cone Column Distillation as a Strategy for Remediation of Smoke Taint in Juice and Wine

Files

hdl_146477.pdf (1.28 MB)
  (Published version)

Date

2022

Authors

Puglisi, C.
Ristic, R.
Saint, J.
Wilkinson, K.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Molecules, 2022; 27(22):8096-1-8096-16

Statement of Responsibility

Carolyn Puglisi, Renata Ristic, Jamie Saint, and Kerry Wilkinson

Conference Name

Abstract

Where vineyard exposure to bushfire smoke cannot be avoided or prevented, grape and wine producers need strategies to transform smoke-affected juice and wine into saleable product. This study evaluated the potential for spinning cone column (SCC) distillation to be used for the remediation of ‘smoke taint’. Compositional analysis of ‘stripped wine’ and condensate collected during SCC treatment of two smoke-tainted red wines indicated limited, if any, removal of volatile phenols, while their non-volatile glycoconjugates were concentrated due to water and ethanol removal. Together with the removal of desirable volatile aroma compounds, this enhanced the perception of smoke-related sensory attributes; i.e., smoke taint intensified. Stripped wines also became increasingly sour and salty as ethanol (and water) were progressively removed. A preliminary juice remediation trial yielded more promising results. While clarification, heating, evaporation, deionization and fermentation processes applied to smoke-tainted white juice gave ≤3 μg/L changes in volatile phenol concentrations, SCC distillation of smoke-tainted red juice increased the volatile phenol content of condensate (in some cases by 3- to 4-fold). Deionization of the resulting condensate removed 75 μg/L of volatile phenols, but fermentation of reconstituted juice increased volatile phenol concentrations again, presumably due to yeast metabolism of glycoconjugate precursors. Research findings suggest SCC distillation alone cannot remediate smoke taint, but used in combination with adsorbents, SCC may offer a novel remediation strategy, especially for tainted juice.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

License

Grant ID

Call number

Persistent link to this record