Pseudomonas aeruginosa dose response and bathing water infection

dc.contributor.authorROSER, D.
dc.contributor.authorVAN DEN AKKER, B.
dc.contributor.authorBOASE, S.
dc.contributor.authorHAAS, C.
dc.contributor.authorASHBOLT, N.
dc.contributor.authorRICE, S.
dc.date.issued2014
dc.description.abstractPseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey’s exponential ‘single-hit’ model and predict infection likelihood and severity (lesions/m2), respectively. ‘Third-generation’, mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review’s findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.
dc.description.statementofresponsibilityD. J. Roser, B. Van Den Akker, S. Boase, C.N. Haas, N. J. Ashbolt and S. A. Rice
dc.identifier.citationEpidemiology and Infection, 2014; 142(3):449-462
dc.identifier.doi10.1017/S0950268813002690
dc.identifier.issn0950-2688
dc.identifier.issn1469-4409
dc.identifier.urihttp://hdl.handle.net/2440/116246
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.rights© Cambridge University Press 2013
dc.source.urihttp://dx.doi.org/10.1017/s0950268813002690
dc.subjectAcute otitis externa; dermatitis; folliculitis
dc.titlePseudomonas aeruginosa dose response and bathing water infection
dc.typeJournal article
pubs.publication-statusPublished

Files